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Abstract. For a degree d surface in projective space with no ruled components, a the-
orem of Salmon asserts that the flex locus is a curve on this surface of degree at most
11d2−24d. We generalise this result to hypersurfaces of arbitrary dimension and compute
explicit equations of the flex locus by using multidimensional resultant theory. For generic
hypersurfaces, we show that our degree bound is reached and that the generic flex line is
unique and with expected contact order.
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The flex locus of a projective hypersurface is the subset of points through which there
is a line with higher contact order than expected. For a plane projective curve, the flex
locus is well known: it is the set of inflexion points and it is given by the intersection of the
curve with the zero locus of the Hessian. In this article, we study the basic geometry of the
flex locus. In particular, we address the problem of computing the dimension, degree and
equations of the flex locus of a hypersurface of a projective space of arbitrary dimension.

Let K be an algebraically closed field of characteristic zero and V ⊂ Pn a subvariety of the
n-dimensional projective space over K. The osculating order of V at a point p ∈ Pn is the
maximum contact order at p between V and a line. We denote it by µp(V ). An irreducible
variety is ruled if it is a union of lines or, equivalently, if the osculating order is infinite for
all points p ∈ V . In addition, we say that a property holds for a generic element in a family
if it holds outside a proper Zariski closed subset of this family.

The following result is a consequence of [Lan99, Generic Theorem]:

Theorem 0.1. Let V ⊂ Pn be a hypersurface with no ruled components, and p ∈ V . Then
µp(V ) ≥ n and the equality holds for a generic p ∈ V .

This result leads to the following definition:

Definition 0.2. We call the flex locus of a projective hypersurface V ⊂ Pn the subset

Flex(V ) = {p ∈ V | µp(V ) > n}.
A point p ∈ Flex(V ) is called a flex point. A line with contact order larger than n at some
point of V is called a flex line.

Let us first summarize the known results in the case of curves and surfaces.

Theorem 0.3. Let C ⊂ P2 be a plane curve of degree d which does not contain any line.
Then C contains at most 3d2 − 6d flex points.

This result follows directly from the fact that p ∈ C is a flex point if and only if the
Hessian of the homogeneous polynomial equation of C vanishes at p (see for instance [BK86,
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Thm.1, Ch.7.3]). In the case of surfaces, the following result is due to Salmon [Sal49, Ch.VI]
but it has been revisited by several authors since then (e.g. [Kat14, EH13]):

Theorem 0.4. Let S ⊂ P3 be a surface of degree d with no ruled components. Then Flex(S)
is a curve on S of degree at most 11d2 − 24d.

In particular, if d = 3, we get that degFlex(S) ≤ 27. Since a flex line of a cubic surface
S has contact order ≥ 4, it is necessarily contained in S by Bezout’s theorem: we recover
the classical fact that a cubic contains at most 27 lines (and it turns out to be the exact
number when S is smooth).

Our first main theorem generalises these results to hypersurfaces of arbitrary dimension.
Its proof follows the original proof given by Salmon in the case of surfaces and leads to the
construction of explicit equations for the flex locus. To be more precise, let us introduce
two sets of variables

x = (x0, . . . , xn) and y = (y0, . . . , yn).

To any homogeneous polynomial F ∈ K[x], we associate the family of homogeneous poly-
nomials F0, . . . , Fd∈K[x, y] which are uniquely determined by the formula

(1) F (x+ ty) =
d∑

k=0

Fk(x, y)
tk

k!
.

For all k = 0, . . . , d, the polynomial Fk is bihomogeneous of bidegree (d−k, k) with respect to
x and y and it admits an explicit expression that depends on the kth-order partial derivatives
of F . In particular, we have that F0(x, y) = F (x) and Fd(x, y) = F (y). Below, the resultant
operator of n + 1 homogeneous polynomials in the n + 1 variables y0, . . . , yn is denoted by
Resy(·).
Theorem 0.5. Let V ⊂ Pn be a hypersurface defined by a square-free polynomial F of degree
d. If d < n, all components of V are ruled. If d ≥ n, then either V has a ruled component
or Flex(V ) is a codimension 1 subvariety of V with equations

(2) Flex(V ) = {F = P = 0},
where P mod F is uniquely determined by

(3) Resy(F1, . . . , Fn, y0) ≡ xn!0 P mod F.

Moreover, in this case the flex locus is equipped with a scheme structure and we have that

(4) deg Flex(V ) = d2
n∑

k=1

n!

k
− d(n+ 1)!

Example 0.6. Let C = {F = 0} ⊂ P2 be a smooth curve of degree d. A straightforward
computation using the Euler identities shows that

(5) − (d− 1)2Resy(F1, F2, y0) ≡ x20 det(HF ) mod F,

where HF stands for the Hessian of F (determinant of the Hessian matrix): we recover the
well–known fact that p ∈ C is a flex if and only if the Hessian of F vanishes at p.

Our second main result ensures that the degree bound is sharp and that the expected
properties of the flex locus hold in the generic case. More precisely :
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Theorem 0.7. For F a generic polynomial of degree d ≥ n, the subscheme Z(F, P ) defined
by (2) and (3) is reduced and the degree bound (4) is reached. Moreover, through a generic
flex point, there is a unique flex line, and this line has contact order exactly n + 1 (or is
contained in V if d = n).

We conclude by mentioning that giving a closed form for a canonical representative for
P modulo F in Theorem 0.5 seems to be a challenge on its own. In the case of curves, such
a representative is given by the Hessian. For n = 3, Salmon also obtained a representative
of this polynomial as a determinantal closed formula in terms of covariants, based on an
approach by Clebsch [Sal65, Articles 589 to 597]. It would be interesting to generalize these
formulae to higher dimensions.
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