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Abstract. We linearize the concept of free multivariate skew polynomials. We give a
vector space description of their sets of roots in one conjugacy class, whose univariate
counterpart is crucial in applications such as network coding. As a collateral consequence,
we derive new Hilbert 90 theorems for general Galois field extensions. In contrast with
the homological versions, these are computational theorems based on multivariate norms
that reflect the relations among generators of the corresponding Galois group.
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1. Introduction

Univariate skew polynomials were introduced by Ore in [6], and evaluation and interpo-
lation using them were studied by Lam and Leroy in [1, 2]. Their results on linearizing their
sets of roots are crucial for finding optimal error-correcting codes for the rank and sum-rank
metrics [4], which have applications in linear network coding, among others (see [4] and
its references). Moreover, they observed in [3] that Hilbert’s famous Theorem 90 can be
naturally written in terms of conjugacy and evaluation of skew polynomials.

In [5], we extended the concepts of skew polynomials and their evaluation and interpola-
tion properties to free multivariate skew polynomial rings. One of the main motivations was
to construct good codes for new (or old) metrics yet to be found. In this work, we give a
linearized description of (free) multivariate skew polynomials and their root sets in one con-
jugacy class similar to that in [2]. We then deduce a generalization of Hilbert’s Theorem 90
based on multivariate norms reflecting the relations among generators of the Galois group.

Throughout this paper, we will use the definitions, results and notations from [5]. Fix
a division ring F and variables x1, x2, . . . , xn and denote by M the set of (free) strings on
these variables, which we will simply call monomials. Inspired by Ore’s work [6], we showed
in [5, Th. 1] that a product in a free multivariate polynomial ring with coefficients in F
consists in appending monomials and is additive on degrees if, and only if, there exist a ring
morphism σ : F −→ Fn×n and a σ-derivation δ : F −→ Fn such that

xβ = σ(β)x + δ(β),

for all β ∈ F, where x is the column vector whose i-th component is xi, for i = 1, 2, . . . , n.
We denote by F[x;σ, δ] such a non-commutative ring.

2. Linearized multivariate skew polynomials

We start by introducing linearized multivariate skew polynomials.
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Definition 2.1. Given a (ring) morphism σ : F −→ Fn×n, a σ-derivation δ : F −→ Fn, a
point a ∈ Fn and a monomial m ∈M, we define the operator

Dm
a : F −→ F

as follows. First we define D1
a = Id, then we define

Da(β) = (Dx1a (β),Dx2a (β), . . . ,Dxna (β))T = σ(β)a + δ(β) ∈ Fn,
for all β ∈ F. Next, if Dm

a is defined for m ∈M, then we define

Dxm
a (β) = (Dx1ma (β),Dx2ma (β), . . . ,Dxnma (β))T = σ(Dm

a (β))a + δ(Dm
a (β)) ∈ Fn,

for all β ∈ F. Denote by F[Da] the left vector space over F with basis {Dm
a | m ∈ M}.

We define linearized multivariate skew polynomials as the elements of F[Da]. Given F ∈
F[x;σ, δ], we may construct a FD ∈ F[Da] as the image of F by the left linear map

F[x;σ, δ] −→ F[Da]∑
m∈M Fmm 7→

∑
m∈M FmDm

a .

Linearized skew polynomials are right linear over certain division subrings of F, called
centralizers, which motivates the terminology. Centralizers for univariate skew polynomials
were defined in [2, Eq. (3.1)].

Definition 2.2. Given a ∈ Fn, we define its (σ, δ)-centralizer, or simply centralizer, as

Ka = Kσ,δ
a = {β ∈ F | Da(β) = aβ}.

The following lemma extends [2, Lemma 3.2] (see also [3, Sec. 3]) from the univariate to
the multivariate case. The proof is straightforward.

Lemma 2.3. For all a ∈ Fn, it holds that Ka ⊆ F is a division subring of F. Moreover, for
F ∈ F[Da], the map β 7→ F (β), for β ∈ F, is right linear over Ka.

We now connect multivariate skew polynomial evaluation [5, Def. 3] and linearized skew
polynomial evaluation. The following result can be proven exactly as [4, App. A].

Theorem 2.4. Given a ∈ Fn, β ∈ F∗, F ∈ F[x;σ, δ], and writing D = Da, it holds that

F (D(β)β−1) = FD(β)β−1.

3. Linearized P-closed sets in one conjugacy class

In this section, we give linearized descriptions of finitely generated P-closed sets in one
conjugacy class. Here, we will need the concepts of conjugacy, P-closed sets, P-independence
and P-bases from [5]. We denote by A = Z(I(A)) ⊆ Fn the P-closure of a set A ⊆ Fn.
Observe that the conjugacy relation in [5, Def. 4] is a ∼ b if, and only if, there exists β ∈ F∗
such that b = aβ = Da(β)β−1. We will denote by C(a) the conjugacy class of a ∈ Fn.

Our main result is the following lemma, which extends [2, Th. 4.5] from the univariate
to the multivariate case.

Lemma 3.1. Let a,b1,b2, . . . ,bM ∈ Fn and β1, β2, . . . , βM ∈ F∗ be such that

bi = Da(βi)β
−1
i ,

for i = 1, 2, . . . ,M . Then B = {b1,b2, . . . ,bM} is P-independent if, and only if, BD =
{β1, β2, . . . , βM} is right linearly independent over Ka.
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Proof. Assume first that B is P-independent, but BD is not right linearly independent over
Ka. Let B∗ = {F1, F2, . . . , FM} ⊆ F[x, σ, δ] be a dual P-basis of B (see [5, Def. 11]). We
may assume without loss of generality that there exist λ1, λ2, . . . , λM−1 ∈ Ka such that

βM =
M−1∑
i=1

βiλi.

Therefore by Lemma 2.3 and Theorem 2.4, we reach the following contradiction

βM = FDM (βM ) =
M−1∑
i=1

FDM (βi)λi = 0.

Assume now that BD is right linearly independent over Ka. We will prove by induction
on M that B is P-independent. The case M = 1 is obvious since singleton sets are always
P-independent. Assume then that B′ = {b1,b2, . . . ,bM−1} is P-independent but bM ∈ B′.

First we see that we may assume without loss of generality that βM = 1, redefining
βi = βiβ

−1
M and a = bM (bi remains unchanged), for i = 1, 2, . . . ,M .

Now let B′∗ = {F1, F2, . . . , FM−1} be a dual P-basis of B′. Fix i = 1, 2, . . . ,M − 1 and
define Gi = (x − bi)Fi ∈ F[x;σ, δ]n. It holds that Gi(bj) = 0, for j = 1, 2, . . . ,M − 1, by
[5, Th. 3]. Since a = bM ∈ B′, we deduce from [5, Th. 3] and [5, Th. 5] that

0 = Gi(a) = (aFi(a) − bi)Fi(a) = Da(Fi(a))−Da(βi)β
−1
i Fi(a)

if Fi(a) 6= 0. Now, we have that

Da(Fi(a))Fi(a)−1 = Da(βi)β
−1
i ⇐⇒ aFi(a) = aβi ⇐⇒ aβ

−1
i Fi(a) = a,

thus β−1i Fi(a) ∈ Ka. Hence in all cases (Fi(a) = 0 or 6= 0) we have that Fi(a) = βiλi,
for some λi ∈ Ka. Next if F = F1 + F2 + · · · + FM−1, we have that F (bj) = 1, for
j = 1, 2, . . . ,M−1. Since a = bM ∈ B′, we deduce from [5, Th. 5] the following contradiction

βM = 1 = F (a) =

M−1∑
i=1

Fi(a) =

M−1∑
i=1

βiλi.

�

With the same techniques, we can also prove that if G ⊆ Fn is finite and b ∈ G, then b
is conjugate to an element in G. Hence we can easily deduce the following result.

Theorem 3.2. Let a ∈ F. The following hold:
(1) If G ⊆ C(a) is finite and Ω = G ⊆ Fn, then

(1) Ω = {Da(β)β−1 | β ∈ ΩD \ {0}} ⊆ C(a),

for a finite-dimensional right vector space ΩD ⊆ F over Ka.
(2) Conversely, if ΩD ⊆ F is a finite-dimensional right vector space over Ka, then Ω ⊆

C(a) given as in (1) is a finitely generated P-closed set.
Moreover if Item 1 or 2 holds, then B is a P-basis of Ω if, and only if, BD = {β ∈ F∗ |
Da(β)β−1 ∈ B} is a right basis of ΩD over Ka. In particular, we have that

Rk(Ω) = dimKa(ΩD).



122 UMBERTO MARTÍNEZ-PEÑAS

The following important consequence follows immediately:

Corollary 3.3. Let a ∈ Fn. The conjugacy class C(a) ⊆ Fn is P-closed and finitely gener-
ated if, and only if, F is a finite-dimensional right vector space over Ka.

4. Hilbert 90 theorems with multivariate norms

As observed in [3], generalizations of Hilbert’s Theorem 90 can be understood as any
effective criterion for conjugacy. Thus we can give a general statement from Corollary 3.3.

Theorem 4.1 (Multivariate Hilbert 90). Let a ∈ Fn, assume that F is a finite-dimen-
sional right vector space over Ka, and let {Fj}j∈J be generators of I(C(a)) as a left ideal.
For b ∈ Fn, there exists β ∈ F∗ such that

b = Da(β)β−1,

if and only if, Fj(b) = 0, for all j ∈ J , where evaluation is as in [5, Def. 3].

Assume now that F is a field, a = 1 = (1, 1, . . . , 1), δ = 0 and σ = diag(σ1, σ2, . . . , σn), for
field automorphisms σi : F −→ F, for i = 1, 2, . . . , n (as in [5, Ex. 1]). Then K = K1 = FG
is the field of invariant elements of F by the group G generated by σ1, σ2, . . . , σn. If G is
finite and K ⊆ F is a Galois extension, we can easily prove, using Theorem 2.4, that the set

{m− n ∈ F[x;σ, δ] | m, n ∈M,m(σ) = n(σ)}
generates I(C(1)), wherem(σ) is the conventional symbolic evaluation ofm in (σ1, σ2, . . ., σn).
Thus we deduce the following generalization of Hilbert 90 for Galois field extensions.

Corollary 4.2. Let K ⊆ F be a Galois extension of fields with Galois group G generated by
σ1, σ2, . . . , σn. For a list b = (b1, b2, . . . , bn) ∈ (F∗)n, there exists β ∈ F∗ such that

bi = σi(β)β−1, for all i = 1, 2, . . . , n,

if and only if, the following equations are satisfied:

Nm(b) = Nn(b), whenever m(σ) = n(σ),

where Nm(b) = m(b) and Nn(b) = n(b) can be computed recursively as in [5, Th. 2].
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